Sinorhizobium teranga bv. acaciae ORS1073 and Rhizobium sp. strain ORS1001, two distantly related Acacia-nodulating strains, produce similar Nod factors that are O carbamoylated, N methylated, and mainly sulfated.

نویسندگان

  • J Lorquin
  • G Lortet
  • M Ferro
  • N Mear
  • J C Promé
  • C Boivin
چکیده

We have determined the structures of Nod factors produced by strains representative of Sinorhizobium teranga bv. acaciae and the so-called cluster U from the Rhizobium loti branch, two genetically different symbionts of particular Acacia species. Compounds from both strains were found to be similar, i.e., mainly sulfated, O carbamoylated, and N methylated, indicating a close relationship between host specificity and Nod factor structure, regardless of the taxonomy of the bacterial symbiont.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bradyrhizobium sp. Strains that nodulate the leguminous tree Acacia albida produce fucosylated and partially sulfated nod factors.

We determined the structures of Nod factors produced by six different Bradyrhizobium sp. strains nodulating the legume tree Acacia albida (syn. Faidherbia albida). Compounds from all strains were found to be similar, i.e., O-carbamoylated and substituted by an often sulfated methyl fucose and different from compounds produced by Rhizobium-Mesorhizobium-Sinorhizobium strains nodulating other spe...

متن کامل

The nodulation of alfalfa by the acid-tolerant Rhizobium sp. strain LPU83 does not require sulfated forms of lipochitooligosaccharide nodulation signals.

The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gen...

متن کامل

Inactivation of the nodH gene in Sinorhizobium sp. BR816 enhances symbiosis with Phaseolus vulgaris L.

Sulfate modification on Rhizobium Nod factor signaling molecules is not a prerequisite for successful symbiosis with the common bean (Phaseolus vulgaris L.). However, many bean-nodulating rhizobia, including the broad host strain Sinorhizobium sp. BR816, produce sulfated Nod factors. Here, we show that the nodH gene, encoding a sulfotransferase, is responsible for the transfer of sulfate to the...

متن کامل

Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae.

Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhi...

متن کامل

NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity.

Following (iso)flavonoid induction, nodulation genes of the symbiotic nitrogen-fixing bacterium Rhizobium sp. strain NGR234 elaborate a large family of lipooligosaccharidic Nod factors (NodNGR factors). When secreted into the rhizosphere of compatible legumes, these signal molecules initiate root hair deformation and nodule development. The nonreducing glucosamine residue of NodNGR factors are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 9  شماره 

صفحات  -

تاریخ انتشار 1997